■中央二項係数と(その3)

答えを先にいうと  Σ1/(2n,n)={2π√3+9}/27

====================================

  Σ1/(2n,n)=1/2*2F1(1,2;3/2;1/4)

となるが,参考文献「電子通信工学のための特殊関数とその応用」には

  2F1(1,1;3/2;x^2)=arcsin(x)/x√(1-x^2)

は収録されているものの,2F1(1,2;3/2;x^2)は見あたらない.

 そこで,その正体を探るために,3項漸化式

  (a-b)(1-x)2F1(a,b;c;x)+(c-a)2F1(a-1,b;c;x)+(b-c)2F1(a,b-1;c;x)=0

において,a=2,b=1,c=3/2とおくと,

  2F1(1,2;3/2;x)=1/2(1-x){2F1(1,1:3/2;x)+2F1(2,0;3/2;x)}

ここで,2F1(1,1:3/2;x^2)は既知,また,2F1(2,0;3/2;x^2)は定数関数1であるから,

  2F1(1,2;3/2;x^2)=1/2(1-x^2){arcsin(x)/x√(1-x^2)+1}

となる.

 x=1/2を代入することによって

  Σ1/(2n,n)={2π√3+9}/27

====================================