■フルヴィッツ曲線(その33)
公転と自転の向きを逆方向にとると,フルヴィッツ曲線の運動族は
x=(n-2)acos(nβ+θ)+nacos((n−2)β−θ)−2Rsin(β+θ)+2acos((n−1)θ)
y=-(n-2)asin(nβ+θ)+nasin((n−2)β−θ)−2Rcos(β+θ)+2asin((n−1)θ)
m=n
cos(mθ+β)-cos(n-1)β=0
sin(mθ+β)/2sin(mθ-(n-2)β)/2=0
(mθ+nβ)/2=0,π、2π、3π、・・・
(mθ-(n-2)β)/2=0,π、2π、3π、・・・
m=n=3
x=cos(3β+θ)+3cos(β−θ)−6sin(β+θ)+2cos(2θ)
y=-sin(3β+θ)+3sin(β−θ)−6cos(β+θ)+2sin(2θ)
(mθ+nβ)/2=0,β=-θを代入すると
x=cos(2θ)+3cos(2θ)+2cos(2θ)=- 2cos(2θ)
y=sin(2θ)-3sin(2θ)−6+2sin(2θ)=-6 (直線)
(mθ-(n-2)β)/2=0,β=3θを代入すると
x=cos(10θ)+3cos(2θ)−6sin(4θ)+2cos(2θ)
y=-sin(10θ)+3sin(2θ)−6cos(4θ)+2sin(2θ)
===================================
公転と自転の向きを同じ方向にとると,フルヴィッツ曲線の運動族は
x=(n-2)acos(nβ-θ)+nacos((n−2)β+θ)−2Rsin(β-θ)+2acos((n−1)θ)
y=-(n-2)asin(nβ-θ)+nasin((n−2)β+θ)−2Rcos(β-θ)+2asin((n−1)θ)
m=n-2
cos(mθ+β)+cos(n-1)β=0
cos(mθ+nβ)/2cos(mθ-(n-2)β)/2=0
(mθ+nβ)/2=π/2、3π/2、5π/2、・・・
(mθ-(n-2)β)/2=π/2、3π/2、5π/2、・・・
m=1、n=3
x=cos(3β-θ)+3cos(β+θ)−6sin(β-θ)+2cos(2θ)
y=-sin(3β-θ)+3sin(β+θ)−6cos(β-θ)+2sin(2θ)
(mθ+nβ)/2=π/2。θ=-3β+πを代入
x=cos(6β-π)+3cos(-2β+π)−6sin(4β-π)+2cos(-6β+2π)
y=-sin(6β-π)+3sin(-2β+π)−6cos(4β-π)+2sin(-6β+2π)
x=-cos(6β)-cos(2β)+6sin(4β)+2cos(6β)
y=sin(6β)+3sin(2β)+6cos(4β)-2sin(6β)
(mθ-(n-2)β)/2=π/2,θ=β+πを代入
x=cos(2β-π)+3cos(2β+π)+2cos(2β)
y=-sin(2β-π)+3sin(2β+π)+6+2asin(2β)
x=-cos(2β)-3cos(2β)+2cos(2β)=−2cos(2β)
y=+sin(2β)-3sin(2β)+6+2asin(2β)=6 (直線)
===================================
内外の包絡線を分離することができればよいのであるが、困難であろう。
ともあれ、考えかた自体は間違いではなかったことになる。
P />
===================================