■フルヴィッツ曲線(その29)
公転と自転の向きを逆方向にとると,フルヴィッツ曲線の運動族は
x=(n-2)acos(nβ+θ)+nacos((n−2)β−θ)−2Rsin(β+θ)+2acos((n−1)θ)
y=-(n-2)asin(nβ+θ)+nasin((n−2)β−θ)−2Rcos(β+θ)+2asin((n−1)θ)
m=n
cos(mθ+β)-cos(n-1)β=0
sin(mθ+nβ)/2sin(mθ-(n-2)β)/2=0
(mθ+nβ)/2=0,π、2π、3π、・・・
(mθ-(n-2)β)/2=0,π、2π、3π、・・・
===================================
公転と自転の向きを同じ方向にとると,フルヴィッツ曲線の運動族は
x=(n-2)acos(nβ-θ)+nacos((n−2)β+θ)−2Rsin(β-θ)+2acos((n−1)θ)
y=-(n-2)asin(nβ-θ)+nasin((n−2)β+θ)−2Rcos(β-θ)+2asin((n−1)θ)
m=n-2
cos(mθ+β)+cos(n-1)β=0
cos(mθ+nβ)/2cos(mθ-(n-2)β)/2=0
(mθ+nβ)/2=π/2、3π/2、5π/2、・・・
(mθ-(n-2)β)/2=π/2、3π/2、5π/2、・・・
===================================
辺縁は円だろうか?
m=2,n=4
(mθ+nβ)/2=π/2
(2θ+4β)=π
θ=π/2-2β
x=2cos(4β-θ)+4cos(2β+θ)−16sin(β-θ)+2cos(3θ)
y=-2sin(4β-θ)+4sin(2β+θ)−16cos(β-θ)+2sin(3θ)
x=2cos(6β-π/2)+4cos(π/2)−16sin(3β-π/2)+2cos(3π/2-6β)
y=-2sin(6β-π/2)+4sin(π/2)−16cos(3β-π/2)+2sin(3π/2-6β)
x=2sin(6β)+16cos(3β)-2sin(6β)
y=2cos(6β)+4−16sin(3β)-2cos(6β)
x=+16cos(3β)
y=4−16sin(3β)
x^2+(y-4)^2=16^2
これは円である。
===================================
辺縁は直線だろうか?
m=2,n=4
(mθ-(n-2)β)/2=π/2
(2θ-2β)=π
θ=π/2+β
x=2cos(4β-θ)+4cos(2β+θ)−16sin(β-θ)+2cos(3θ)
y=-2sin(4β-θ)+4sin(2β+θ)−16cos(β-θ)+2sin(3θ)
x=2cos(3β-π/2)+4cos(3β+π/2)−16sin(-π/2)+2cos(3π/2+3β)
y=-2sin(3β-π/2)+4sin(3β+π/2)−16cos(-π/2)+2sin(3π/2+3β)
x=2sin(3β)-4sin(3β)+16+2sin(3β)
y=2cos(3β)+4cos(3β)-2cos(3β)
x=16
y=4cos(3β)
これは直線である。
===================================