■フルヴィッツ曲線(その12)
ペリトロコイド曲線の運動族
x=Rcos(β+γ−θ)+acos((n−1)β−θ)+acos((n−2)θ)
y=Rsin(β+γ−θ)+asin((n−1)β−θ)+asin((n−2)θ)
に対して
(∂y/∂β)(∂x/∂θ)−(∂x/∂β)(∂y/∂θ)=0→訂正
を計算すると
θ=β−2/(n−1)arctan(Rsin((n−2)β−γ)/(Rcos((n−2)β−γ)+(n−1)a))
となって,包絡線は1パラメータ曲線:x=x(β),y=y(β)となります.
===================================
∂y/∂β=Rcos(β+γ−θ)+(n−1)acos((n−1)β−θ)
∂x/∂θ=Rsin(β+γ−θ)+asin((n−1)β−θ)-(n−2)asin((n−2)θ)
∂x/∂β=-Rsin(β+γ−θ)-(n−1)asin((n−1)β−θ)
∂y/∂θ=-Rcos(β+γ−θ)-acos((n−1)β−θ)+(n−2)acos((n−2)θ)
R(n−2)asin(β+γ−θ-(n−1)β+θ)
R(n−2)asin(β+γ−θ-(n−2)θ)
(n-1)(n-2)a^2sin(n−1)β-θ-(n−2)θ)=0
Rsin(γ-(n−2)β)
Rsin(β+γ-(n−1)θ)
(n-1)asin(n−1)β-(n−1)θ)=0
===================================
Rsin(γ-(n−2)β)
Rsin((n−1)β-(n−1)θ+γ-(n−2)β))
(n-1)asin(n−1)β-(n−1)θ)=0
Rsin(γ-(n−2)β)
Rsin((n−1)β-(n−1)θ)cos(γ-(n−2)β)
Rcos((n−1)β-(n−1)θ)sin(γ-(n−2)β)
(n-1)asin(n−1)β-(n−1)θ)=0
Rsin(γ-(n−2)β)
sin(n−1)β-(n−1)θ){Rcos(γ-(n−2)β)+(n-1)a}
cos((n−1)β-(n−1)θ){Rsin(γ-(n−2)β)}=0
===================================
Asin((n−1)β−(n−1)θ)+Bcos((n−1)β−(n−1)θ)=C
の形に整理されました.
A,B,Cの具体的な形は割愛し考え方を示すにとどめますがますが,ここで
cosψ=A/(A^2+B^2)^(1/2),
sinψ=B/(A^2+B^2)^(1/2),
tanψ=B/A
とおくと,
sin((n−1)β−(n−1)θ+ψ)=C/(A^2+B^2)^(1/2)
より
(n−1)β=(n−1)θ−arctan(B/A)+arcsin(C/(A^2+B^2)^(1/2))
=(n−1)θ−arctan(B/A)+arctan(C/(A^2+B^2−C^2)^(1/2))
===================================
A=Rcos(γ-(n−2)β)+(n-1)a
B=Rsin(γ-(n−2)β)
C=Rsin((n−2)β-γ)=-B
=(n−1)θ−arctan(-C/A)+arctan(C/A)
=(n−1)θ+2arctan(C/A)
より
θ=β−2/(n−1)arctan(Rsin((n−2)β−γ)/(Rcos((n−2)β−γ)+(n−1)a))
===================================