■フルヴィッツ曲線
正n角形の内転形であるフルヴィッツ曲線について再考
===================================
正n角形の枠を(n−2)公転について1回自転させたときの包絡線の方程式は
x=asinθsin(n−1)θ−Rsinθ+(n−1)acosθcos(n−1)θ
y=acosθsin(n−1)θ−Rcosθ−(n−1)asinθcos(n−1)θ
で表されます.
x=asinθsin(n−1)θ−acosθcos(n−1)θ+nacosθcos(n−1)θ−Rsinθ
y=acosθsin(n−1)θ+asinθcos(n−1)θ−nasinθcos(n−1)θ−Rcosθ
x=−acosnθ+nacosθcos(n−1)θ−Rsinθ
y= asinnθ−nasinθcos(n−1)θ−Rcosθ
魚の尻尾のような突起をもつ包絡線を楕円の平行曲線で近似して
a=R/{(n−1)^2−1}
とおくと特異点を解消することができますから
x=−cosnθ+ncosθcos(n−1)θ−n(n−2)sinθ
y= sinnθ−nsinθcos(n−1)θ−n(n−2)cosθ
===================================
n=3とおくと
x=2(cosθ)^3−3sinθ
y=2(sinθ)^3−3cosθ
===================================