■完全ベキ乗数列(その38)
1−1/2+1/3−1/4+・・・=log2
1−1/3+1/5−1/7+・・・=π/4
それでは,
[Q]1−1/4+1/7−1/10+・・・=?
===================================
[A]1−1/4+1/7−1/10+・・・=π/3√3+1/3・log2
1−1/2+1/3−1/4+・・・=log2
は
1/2・Σ{1/(n+1/2)−1/(n+1)}
1−1/3+1/5−1/7+・・・=π/4
は
1/4・Σ{1/(n+1/4)−1/(n+1)}
−1/4・Σ{1/(n+3/4)−1/(n+1)}
1−1/4+1/7−1/10+・・・=?
は
1/6・Σ{1/(n+1/6)−1/(n+1)}
−1/6・Σ{1/(n+4/6)−1/(n+1)}
と書くことができる.
一般に
Σ{1/(n+p/q)−1/(n+1)}
=π/2・cotpπ/q+log2q−2Σcos2pkπ/q・logsinkπ/q (0<k<q/2)
===================================
[1]p=1,q=2
Σ{1/(n+p/q)−1/(n+1)}=log4
1/2・Σ{1/(n+1/2)−1/(n+1)}=log2
[2]p=1,q=4
Σ{1/(n+p/q)−1/(n+1)}=π/2+log8
[3]p=3,q=4
Σ{1/(n+p/q)−1/(n+1)}=−π/2+log8
1/4・Σ{1/(n+1/4)−1/(n+1)}
−1/4・Σ{1/(n+3/4)−1/(n+1)}=π/4
[4]p=1,q=6
Σ{1/(n+p/q)−1/(n+1)}=π/2・√3+log12−2{1/2・log1/2−1/2・log√3/2}
[5]p=4,q=6
Σ{1/(n+p/q)−1/(n+1)}=−π/2√3+log12−2{−1/2・log1/2−1/2・log√3/2}
1/6・Σ{1/(n+1/6)−1/(n+1)}
−1/6・Σ{1/(n+4/6)−1/(n+1)}=π/3√3+1/3・log2
===================================