■曲線の自然方程式(その8)
一方,エピサイクロイドは
x=(n+1)cosθ−cos(n+1)θ
y=(n+1)sinθ−sin(n+1)θ
で表される。自然方程式はどのような形になるのだろうか?
===================================
dx/dt=-(n+1)sint+(n+1)sin(n+1)t
dy/dt=(n+1)cost-(n+1)cos(n-1)t
d^2x/dt^2=-(n+1)cost+(n+1)^2cos(n+1)t
d^2y/dt^2=-(n+1)sint+(n+1)^2sin(n+1)t
{dx/dt・d^2y/dt^2-d^2x/dt^2・dy/dt}
=(n+1)^2(sint-sin(n+1)t)(sint-(n+1)sin(n+1)t)+(n+1)^2(cost-cos(n+1)t)(cost-(n+1)cos(n+1)t)
=-n(n+1)^2{1-cosnt}1=-2n(n+1)^2{sin(nt/2)}^2
{(dx/dt)^2+(dy/dt)^2}=2(n+1)^2{1-cos(nt)}=4(n+1)^2{sin(nt/2)}^2
κ=-2n(n+1)^2{sin(nt/2)}^2/8(n+1)^3{sin(nt/2)}^3=-n/4(n+1){sin(nt/2)}
s=∫{(dx/dt)^2+(dy/dt)^2}^1/2dt
=2(n+1)∫sin(nt/2)dt=-4(n+1)/n・cos(nt/2)
===================================
さらに回転円の半径rを追加すると、
κ=--n/4(n+1){sin(nt/2)}
s=-4r(n+1)/n・cos(nt/2)
{sin(nt/2)}=-n/4r(n+1)κ
cos(nt/2)=s/(-4r(n+1)/n)
1/κ^2+s^2=16r^2{(n+1)/n}^2
===================================