■曲線の自然方程式(その7)

 n個の尖点をもつハイポサイクロイドは

  x=(n−1)cosθ+cos(n−1)θ

  y=(n−1)sinθ−sin(n−1)θ

で表される。自然方程式はどのような形になるのだろうか?

===================================

dx/dt=-(n-1)sint-(n-1)sin(n-1)t

dy/dt=(n-1)cost-(n-1)cos(n-1)t

d^2x/dt^2=-(n-1)cost-(n-1)^2cos(n-1)t

d^2y/dt^2=-(n-1)sint+(n-1)^2sin(n-1)t

{dx/dt・d^2y/dt^2-d^2x/dt^2・dy/dt}

=(n-1)^2(sint+sin(n-1)t)(sint-(n-1)sin(n-1)t)+(n-1)^2(cost-cos(n-1)t)(cost+(n-1)cos(n-1)t)

=-n(n-1)^2{1-cosnt}=-2n(n-1)^2{sin(nt/2)}^2

{(dx/dt)^2+(dy/dt)^2}=2(n-1)^2{1-cos(nt)}=4(n-1)^2{sin(nt/2)}^2

κ=-2n(n-1)^2{sin(nt/2)}^2/8(n-1)^3{sin(nt/2)}^3=-n/4(n-1){sin(nt/2)}

s=∫{(dx/dt)^2+(dy/dt)^2}^1/2dt

=2(n-1)∫sin(nt/2)dt=-4(n-1)/n・cos(nt/2)

===================================

さらに回転円の半径rを追加すると、

κ=-n/4r(n-1){sin(nt/2)}

s=-4r(n-1)/n・cos(nt/2)

cos(nt/2)=s/(-4r(n-1)/n)

1/κ^2+s^2=16r^2{(n-1)/n}^2

===================================