■ドローネー集合(その50)
高貴な数とは、連分数v=[a0:a1,a2,・・,an,1,1,1,・・・]によって定義される。
====================================
[a0:a1,a2,・・,an]のk番目[a0:a1,a2,・・,ak]で打ち切ったとき、
近似分数の分子と分母をそれぞれ、Ak, Bkで表すと
v=(τAn+An-1)/(τBn+Bn-1)
のように表現できる。
(81τ+334)/(73τ+301)=1+(8τ+33)/(73τ+301)
(8τ+33)/(73τ+301)=(16τ+66)/(146τ+602)
=(8√5+74)/(73√5+675)
=-5156/(73√5+675)(8√5-74)
=5156/(47030+2√5)
=2578/(23515+√5)
=1/(9+(313+√5)/2578)
=1/(9+97964/2578(313-√5))
=1/(9+97964/806914-2578√5))
=1/(9+1/(8+(23202-2578√5)/97964)
=1/(9+1/(8+(11601-1289√5)/48982)
=1/(9+1/(8+(126275596/48982(11601+1289√5))
=1/(9+1/(8+(126275596)/(568240182+63137798√5)
=1/(9+1/(8+1/(4+(63137798+63137798√5)/(126275596)
=1/(9+1/(8+1/(4+(1+√5)/2)
=1/(9+1/(8+1/(5+(√5-1)/2)
=1/(9+1/(8+1/(5+1/(√5+1)/2)
=1/(9+1/(8+1/(5+1/(1+(√5-1)/2)
=1/(9+1/(8+1/(5+1/(1+1/(√5+1)/2)
1だけずれているが・・・
====================================
33・73-8・301=1
9・8-1・73=-1
33/301=1/(9+4/33)
33/301=1/(9+1/(8+1/4)
したがって、[0:a1a2,・・,an]→[0:a1a2,・・,an+1,1,1,1,・・・]
====================================