■ベルヌーイとオイラー(その1)
ヤコブ・ベルヌーイは
Sn=Σ1/n^2=1/1^2+1/2^2+1/3^2+・・・+1/n^2+・・・
が2より小さい値に収束することを発見した。
===================================
Σ1/n^2 =1/1^2+1/2^2+1/3^2+1/4^2+・・・
が収束することは1/n^2<1/(n−1)nを用いて,次のようにして示すことができます.
(証)n次部分和をPn とすると,
Pn =1/1^2+1/2^2+1/3^2+・・・+1/n^2
<1+1/1・2+1/2・3+・・・+1/(n−1)・n
=1+(1/1−1/2)+(1/2−1/3)+・・・(1/(n−1)−1/n)
=2−1/n<2
より,単調増加数列{Pn }は有界でn→∞のとき収束することがわかります.
===================================