■x^2+y^2+z^2+w^2=n(その9)

 3(x^2+y^2+z^2+w^2)

=(x^2+y^2)+(z^2+w^2)

+(x^2+z^2)+(y^2+w^2)

+(x^2+w^2)+(y^2+z^2)

右辺を2乗すると

 x^4+y^4+z^4+w^4+2x^2y^2+2z^2w^2

+x^4+y^4+z^4+w^4+2x^2z^2+2y^2w^2

+x^4+y^4+z^4+w^4+2x^2w^2+2y^2z^2

+2(x^2+y^2)(z^2+w^2)

+2(x^2+z^2)(y^2+w^2)

+2(x^2+w^2)(y^2+z^2)

+6(x^2+y^2+z^2+w^2)^2

=9(x^4+y^4+z^4+w^4)

+14(x^2y^2+x^2z^2+x^2w^2+y^2z^2+y^2w^2+z^2w^2)

+2x^2(z^2+w^2)+2y^2(z^2+w^2)

+2x^2(y^2+w^2)+2z^2(y^2+w^2)

+2x^2(y^2+z^2)+2w^2(y^2+z^2)

=9(x^4+y^4+z^4+w^4)

+18(x^2y^2+x^2z^2+x^2w^2+y^2z^2+y^2w^2+z^2w^2)

左辺を2乗すると

9(x^4+y^4+z^4+w^4+2x^2y^2+2x^2z^2+2x^2w^2+2y^2z^2+2y^2w^2+2z^2w^2)=右辺

===================================