■周期的四面体らせん構造(その8)

 x軸回りに回転

  A(x,−bs,bc)

  B(x,bs,−bc)

  C(−x,c/2,s/2)

  D(−x,−c/2,−s/2)

  E(α,βc−γs,βs+γc)

 投影図上,AB=CEが成り立つ.

  4b^2s^2=(x+α)^2+(βc−γs−c/2)^2

  4b^2s^2=(x+α)^2+β^2c^2+γ^2s^2+c^2/4−2βγsc+γsc−βc^2

  4b^2−4b^2c^2=(x+α)^2+β^2c^2+γ^2−γ^2c^2+c^2/4−2βγsc+γsc−βc^2

c^2(β^2−γ^2+1/4−β+4b^2)+sc(−2βγ+γ)+(x+α)^2+γ^2−4b^2=0

A=(β^2−γ^2+1/4−β+4b^2)

B=(2βγ−γ)

C=(x+α)^2+γ^2−4b^2

  C+Ac^2=Bsc

  A^2c^4+2ACc2+C^2=B^2c^2(1−c^2)

  (A^2+B^2)c^4+(2AC−B^2)c2+C^2=0

s^2,c^2が求まる.

===================================