■タクシー数のパラメータ解(その7)
(7a^4−2ab^3)が1番目
(7a^4−11ab^3)が3番目
(7b^4−2a^3b)が2番目
(7b^4−11a^3b)が4番目とする。
====================================
9^3+10^3=12^3+1
(7a^4−2ab^3)=12k^4
(7a^4−11ab^3)=9k^4
(7b^4−2a^3b)=10k^4
(7b^4−11a^3b)=1k^4
9ab^3=3k^4、9a^3b=9k^4
a^2/b^2=3
====================================
9^3+15^3=2^3+16^3
(7a^4−2ab^3)=16k^4
(7a^4−11ab^3)=9k^4
(7b^4−2a^3b)=15k^4
(7b^4−11a^3b)=2k^4
9ab^3=7k^4、9a^3b=13k^4
a^2/b^2=13/7
====================================
15^3+33^3=2^3+34^3
(7a^4−2ab^3)=34k^4
(7a^4−11ab^3)=15k^4
(7b^4−2a^3b)=33k^4
(7b^4−11a^3b)=2k^4
9ab^3=19k^4、9a^3b=3k^41
a^2/b^2=31/19
====================================
16^3+33^3=9^3+34^3
(7a^4−2ab^3)=34k^4
(7a^4−11ab^3)=16k^4
(7b^4−2a^3b)=33k^4
(7b^4−11a^3b)=9k^4
9ab^3=18k^4、9a^3b=24k^4
a^2/b^2=4/3
====================================
19^3+24^3=10^3+27^3
(7a^4−2ab^3)=27k^4
(7a^4−11ab^3)=19k^4
(7b^4−2a^3b)=24k^4
(7b^4−11a^3b)=10k^4
9ab^3=8k^4、9a^3b=14k^4
a^2/b^2=7/4
====================================
いずれもNG
====================================