■タクシー数のパラメータ解(その7)

(7a^4−2ab^3)が1番目

(7a^4−11ab^3)が3番目

(7b^4−2a^3b)が2番目

(7b^4−11a^3b)が4番目とする。

====================================

  9^3+10^3=12^3+1

(7a^4−2ab^3)=12k^4

(7a^4−11ab^3)=9k^4

(7b^4−2a^3b)=10k^4

(7b^4−11a^3b)=1k^4

9ab^3=3k^4、9a^3b=9k^4

a^2/b^2=3

====================================

  9^3+15^3=2^3+16^3

(7a^4−2ab^3)=16k^4

(7a^4−11ab^3)=9k^4

(7b^4−2a^3b)=15k^4

(7b^4−11a^3b)=2k^4

9ab^3=7k^4、9a^3b=13k^4

a^2/b^2=13/7

====================================

  15^3+33^3=2^3+34^3

(7a^4−2ab^3)=34k^4

(7a^4−11ab^3)=15k^4

(7b^4−2a^3b)=33k^4

(7b^4−11a^3b)=2k^4

9ab^3=19k^4、9a^3b=3k^41

a^2/b^2=31/19

====================================

  16^3+33^3=9^3+34^3

(7a^4−2ab^3)=34k^4

(7a^4−11ab^3)=16k^4

(7b^4−2a^3b)=33k^4

(7b^4−11a^3b)=9k^4

9ab^3=18k^4、9a^3b=24k^4

a^2/b^2=4/3

====================================

  19^3+24^3=10^3+27^3

(7a^4−2ab^3)=27k^4

(7a^4−11ab^3)=19k^4

(7b^4−2a^3b)=24k^4

(7b^4−11a^3b)=10k^4

9ab^3=8k^4、9a^3b=14k^4

a^2/b^2=7/4

====================================

いずれもNG

====================================