■タクシー数のパラメータ解(その6)

(7a^4−2ab^3)が1番目

(7a^4−11ab^3)が2番目

(7b^4−2a^3b)が3番目

(7b^4−11a^3b)が4番目とする。

====================================

  9^3+10^3=12^3+1

(7a^4−2ab^3)=12k^4

(7a^4−11ab^3)=10k^4

(7b^4−2a^3b)=9k^4

(7b^4−11a^3b)=1k^4

9ab^3=2k^4、9a^3b=8k^4

a^2/b^2=4、a=2b

112b^4-4b^2=108b^4=12k^4

112b^4-22b^2=90b^4=10k^4

7b^4−16b^4=-9b^4=9k^4

7b^4−88b^4=-81b^4=1k^4

====================================

  9^3+15^3=2^3+16^3

(7a^4−2ab^3)=16k^4

(7a^4−11ab^3)=15k^4

(7b^4−2a^3b)=9k^4

(7b^4−11a^3b)=2k^4

9ab^3=1k^4、9a^3b=7k^4

a^2/b^2=7

343b^4-2√7b^2=12k^4

343b^4-11√7b^2=10k^4

7b^4−14√7b^4=9k^4

7b^4−77√7b^4=1k^4

====================================

  15^3+33^3=2^3+34^3

(7a^4−2ab^3)=34k^4

(7a^4−11ab^3)=33k^4

(7b^4−2a^3b)=15k^4

(7b^4−11a^3b)=2k^4

9ab^3=1k^4、9a^3b=13k^4

a^2/b^2=13

====================================

  16^3+33^3=9^3+34^3

(7a^4−2ab^3)=34k^4

(7a^4−11ab^3)=33k^4

(7b^4−2a^3b)=16k^4

(7b^4−11a^3b)=9k^4

9ab^3=1k^4、9a^3b=7k^4

a^2/b^2=7

====================================

  19^3+24^3=10^3+27^3

(7a^4−2ab^3)=27k^4

(7a^4−11ab^3)=24k^4

(7b^4−2a^3b)=19k^4

(7b^4−11a^3b)=10k^4

9ab^3=3k^4、9a^3b=9k^4

a^2/b^2=5

====================================

いずれもNG

====================================