■タクシー数のパラメータ解(その6)
(7a^4−2ab^3)が1番目
(7a^4−11ab^3)が2番目
(7b^4−2a^3b)が3番目
(7b^4−11a^3b)が4番目とする。
====================================
9^3+10^3=12^3+1
(7a^4−2ab^3)=12k^4
(7a^4−11ab^3)=10k^4
(7b^4−2a^3b)=9k^4
(7b^4−11a^3b)=1k^4
9ab^3=2k^4、9a^3b=8k^4
a^2/b^2=4、a=2b
112b^4-4b^2=108b^4=12k^4
112b^4-22b^2=90b^4=10k^4
7b^4−16b^4=-9b^4=9k^4
7b^4−88b^4=-81b^4=1k^4
====================================
9^3+15^3=2^3+16^3
(7a^4−2ab^3)=16k^4
(7a^4−11ab^3)=15k^4
(7b^4−2a^3b)=9k^4
(7b^4−11a^3b)=2k^4
9ab^3=1k^4、9a^3b=7k^4
a^2/b^2=7
343b^4-2√7b^2=12k^4
343b^4-11√7b^2=10k^4
7b^4−14√7b^4=9k^4
7b^4−77√7b^4=1k^4
====================================
15^3+33^3=2^3+34^3
(7a^4−2ab^3)=34k^4
(7a^4−11ab^3)=33k^4
(7b^4−2a^3b)=15k^4
(7b^4−11a^3b)=2k^4
9ab^3=1k^4、9a^3b=13k^4
a^2/b^2=13
====================================
16^3+33^3=9^3+34^3
(7a^4−2ab^3)=34k^4
(7a^4−11ab^3)=33k^4
(7b^4−2a^3b)=16k^4
(7b^4−11a^3b)=9k^4
9ab^3=1k^4、9a^3b=7k^4
a^2/b^2=7
====================================
19^3+24^3=10^3+27^3
(7a^4−2ab^3)=27k^4
(7a^4−11ab^3)=24k^4
(7b^4−2a^3b)=19k^4
(7b^4−11a^3b)=10k^4
9ab^3=3k^4、9a^3b=9k^4
a^2/b^2=5
====================================
いずれもNG
====================================