■調和数の性質(その8)
Hn =1/1+1/2+1/3+1/4+・・・+1/n
[1]n≧m→Hn−Hm≧(n−m)/n
[2]H2^n≧1+n/2
[証]n=0のときH1=1≧1
H2^n≧1+n/2とする.[1]より
H2^n+1−H2^n≧(2^n+1−2^n)/2^n+=1/2
H2^n+1≧H2^n+1/2=1+(n+1)/2
===================================
[3]H∞=1+1/2+1/3+1/4+1/5+・・・=∞
[証][2]において,n→∞とする.あるいは,同じことではあるが,
1/3+1/4>1/4+1/4=1/2
1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=1/2
1+1/2+1/3+1/4+1/5+1/6+1/6+1/7+1/8+・・・>1+1/2+1/2+1/2+・・・→∞
===================================
[4]H1+H2+・・・+Hn-1=nHn−n
===================================