■多角数の逆数和(その15)
五角数について検算.
Σ2/n(3n−1) (n=1〜)
=Σ2/(n+1)(3n+2) (n=0〜)
=2/3Σ1/(n+1)(n+2/3) (n=0〜)
=2Σ{1/(n+2/3)−1/(n+1)} (n=0〜)
Σ{1/(n+p/q)−1/(n+1)}
=π/2・cotpπ/q+log2q−2Σcos2pkπ/q・logsinkπ/q (0<k<q/2)
Σ{1/(n+2/3)−1/(n+1)}=
=π/2・cot2π/3+log6−2{cos4π/3・logsinπ/3}
=−π/2√3+log6−2{−1/2・log√3/2}
=−π/2√3+log2+log3+1/2log3−log2
=−π/2√3+3/2・log3
したがって,
Σ2/n(3n−1)=3log3−π/√3 (OK)
===================================