七角数:n(5n-3)/2について
===================================
Σ2/n(5n-3) (n=1~)
=Σ2/(n+1)(5n+2) (n=0~)
=10Σ1/(n+1)(n+2/5) (n=0~)
=2Σ{1/(n+2/5)-1/(n+1)} (n=0~)
Σ{1/(n+p/q)-1/(n+1)}
=π/2・cotpπ/q+log2q-2Σcos2pkπ/q・logsinkπ/q (0<k<q/2)
Σ{1/(n+2/5)-1/(n+1)}=π/2・cot2π/5+log10-2{cos2π/5・logsinπ/5+cos4π/5・logsin2π/5}
=π/2・(1-2/√5)^1/2+log10-2{(√5-1)/4・log(10-2√5)^1/2/4-(√5+1)/4・log(10+2√5)^1/2/4
=π/2・(1-2/√5)^1/2+log10-2・{
√5/4・log(10-2√5)^1/2/4-√5/4・log(10+2√5)^1/2/4
-1/4・log(10-2√5)^1/2/4-1/4・log(10-2√5)^1/2/4}
(10-2√5)/(10+2√5)=(10-2√5)^2/80=(120-40√5)/80=(6-2√5)/4→平方根は(√5-1)/2=1/φ
(10-2√5)(10+2√5)=80→平方根は4√5
したがって,
=π/2・(1-2/√5)^1/2+log10-2・{√5/4・log(1/φ)-1/4・log√5/4}
この2倍が解となる.(誤り)
===================================