■g(k)とG(k)  (その26)

  x^4+y^4+z^4+w^4-4xyzw

 =(x^2-y^2)^2+(z^2-w^2)^2+2(xy-zw)^2

  x^4+y^4+z^4+w^4

 =(x^2-y^2)^2+(z^2-w^2)^2+2(xy)^2+2(zw)^2

  x^2+y^2+z^2+w^2

 =(x-y)^2+(z-w)^2+2(xy)+2(zw)

 6(a^2+b^2+c^2+d^2)^2

=(a+b)^4+(a-b)^4+(c+d)^4+(c-d)^4

+(a+c)^4+(a-c)^4+(b+d)^4+(b-d)^4

+(a+d)^4+(a-d)^4+(b+c)^4+(b-c)^4

と近くはなったが,まだ隔たりがある.

===================================

 (x^2+y^2+z^2+w^2)

 =(x-y)^2+(z-w)^2+2(xy)+2(zw)

 =(x-y)^2+(z-w)^2+(x+y)^2+(z+w)^2-(x^2+y^2+z^2+w^2)

 3(x^2+y^2+z^2+w^2)

 =(x-y)^2+(z-w)^2+(x+y)^2+(z+w)^2-(x^2+y^2+z^2+w^2)

 +(x-z)^2+(y-w)^2+(x+z)^2+(y+w)^2-(x^2+y^2+z^2+w^2)

 +(x-w)^2+(y-z)^2+(x+w)^2+(y+z)^2-(x^2+y^2+z^2+w^2)

 6(x^2+y^2+z^2+w^2)

 =(x-y)^2+(z-w)^2+(x+y)^2+(z+w)^2

 +(x-z)^2+(y-w)^2+(x+z)^2+(y+w)^2

 +(x-w)^2+(y-z)^2+(x+w)^2+(y+z)^2

似たような形にはなった.

===================================