■類フィボナッチ数列(その15)

 F1=1,F2=1

 Fn=Fn-1+Fn-2

とすると

 F3=2,F4=3,F5=5,F6=8,F7=13,F8=21,F9=34

 F10=55,F11=89,F12=144,F13=233,・・・

  φ=(1+√5)/2}.−1/φ=(1−√5)/2}

  gn=1/√5{φ^n−(−1/φ)^n}=Fn

===================================

{gn}=2,8,34,144,・・・

  gn=1/√5{φ^3n−(−1/φ)^3n}=F3n

であったが,

{gn}=1,3,13,55,・・・

  gn=1/√5{φ^3n-2−(−1/φ)^3n-2}=F3n-2

{gn}=1,5,21,89,・・・

  gn=1/√5{φ^3n-1−(−1/φ)^3n-1}=F3n-1

===================================

{gn}=3,21,144,・・・

  gn=1/√5{φ^4n−(−1/φ)^4n}=F4n

であったが,

{gn}=1,5,34,233,・・・

  gn=1/√5{φ^4n-3−(−1/φ)^4n-3}=F4n-3

{gn}=1,8,55,・・・

  gn=1/√5{φ^4n-2−(−1/φ)^4n-2}=F4n-2

{gn}=2,13,89,・・・

  gn=1/√5{φ^4n-3−(−1/φ)^4n-3}=F4n-3

===================================