■類フィボナッチ数列(その15)
F1=1,F2=1
Fn=Fn-1+Fn-2
とすると
F3=2,F4=3,F5=5,F6=8,F7=13,F8=21,F9=34
F10=55,F11=89,F12=144,F13=233,・・・
φ=(1+√5)/2}.−1/φ=(1−√5)/2}
gn=1/√5{φ^n−(−1/φ)^n}=Fn
===================================
{gn}=2,8,34,144,・・・
gn=1/√5{φ^3n−(−1/φ)^3n}=F3n
であったが,
{gn}=1,3,13,55,・・・
gn=1/√5{φ^3n-2−(−1/φ)^3n-2}=F3n-2
{gn}=1,5,21,89,・・・
gn=1/√5{φ^3n-1−(−1/φ)^3n-1}=F3n-1
===================================
{gn}=3,21,144,・・・
gn=1/√5{φ^4n−(−1/φ)^4n}=F4n
であったが,
{gn}=1,5,34,233,・・・
gn=1/√5{φ^4n-3−(−1/φ)^4n-3}=F4n-3
{gn}=1,8,55,・・・
gn=1/√5{φ^4n-2−(−1/φ)^4n-2}=F4n-2
{gn}=2,13,89,・・・
gn=1/√5{φ^4n-3−(−1/φ)^4n-3}=F4n-3
===================================