■類フィボナッチ数列(その8)
k=1のとき,F1=1,F2=1・・・この比はFk-1+Fk+1
(a2−βa1)=F2−F1(1−√5)/2=α
(a2−αa1)=F2−F1(1+√5)/2=β
α−β=√5
k=2のとき,F2=1,F4=3・・・この比はFk-1+Fk+1
(a2−βa1)=F4−F2(3−√5)/2=α
(a2−αa1)=F4−F2(3+√5)/2=β
α−β=√5
k=3のとき,F3=2,F6=8・・・この比はFk-1+Fk+1
(a2−βa1)=F6−F3(2−√5)=2α
(a2−αa1)=F6−F3(2+√5)=2β
α−β=2√5
k=4のとき,F4=3,F8=21・・・この比はFk-1+Fk+1
(a2−βa1)=F8−F4(7−3√5)/2=3α
(a2−αa1)=F8−F4(7+3√5)/2=3β
α−β=3√5
===================================
F2k/Fk=Fk-1+Fk+1
[4]Fm+n=Fm-1Fn+FmFn+1
[5]Fm+n=Fm+1Fn+1+Fm-1Fn-1
において,m=nとおけば
F2k=Fk-1Fk+FkFk+1
が証明される.
===================================