■2次の無理数(その7)

【3】回文性

 また,√199の循環節の最後の28を除くと13を中心として対称になっていることにも気付かされます.

  √19=[4;2,1,3,1,2,8,・・・]

  √29=[5;2,1,1,2,10,・・・]

  √43=[6;1,1,3,1,5,1,3,1,1,12,・・・]

  √54=[7;2,1,6,1,2,14,・・・]

  √76=[8;1,2,1,1,5,4,5,1,1,2,1,16,・・・]

  √94=[9;1,2,3,1,1,5,1,8,1,5,1,1,3,2,1,18,・・・]

  √1000=[31;1,1,1,1,1,6,2,2,15,2,2,6,1,1,1,1,1,62,・・・]

 循環部の最後の項を除いた部分は回文(前から読んでも後から読んでも同じ)になっているという事実も,199のみならず,2次の無理数√mに共通していえる性質です.

  √m=[q0;q1,q2,・・,q2,q1,2q0,・・・]

===================================

【4】周期1の整数

 以上のことから,最も素朴な循環連分数は

  √m=[q0;2q0,2q0,2q0,・・・]

で表されるものと考えられます.

 このとき,

  P=2q0^2+1,Q=2q0

より,mは

  (2q0^2+1)^2−m・4q0^2=±1

を満たす整数となるのですが,結局,このようなmは

  m=q0^2+1=2,5,10,・・・

となることが導き出されます.

  √2=[1;2,2,2,・・・]

  √5=[2;4,4,4,・・・]

  √10=[3;6,6,6,・・・]

  √101=[10;20,20,20,・・・]

 しかし,他の整数の平方根はかなり長い周期を持つが,長周期を予言する公式はないようである.

  √61=[7;1,4,3,1,2,2,1,3,4,1,14,・・・,

===================================