■2次の無理数(その5)

 (その4)から,最も素朴な循環連分数は

  √m=[q0;2q0,2q0,2q0,・・・]

で表されるものと考えられます.

 このとき,

  P=2q0^2+1,Q=2q0

より,mは

  (2q0^2+1)^2−m・4q0^2=±1

を満たす整数となるのですが,結局,このようなmは

  m=q0^2+1=2,5,10,・・・

となることが導き出されます.

  √2=[1;2,2,2,・・・]

  √5=[2;4,4,4,・・・]

===================================

  x=q+1/(1+1/2q)

  x=q+2q/(2q+1)=(2q^2+3q)/(2q+1)

===================================