■ピタゴラス数とフェルマーの定理(その3)
[Q]x^3+y^3=12^3+1=1729を満たす整数解(x,y)をすべて求めよ.
[A]x^3+y^3=(x+y)(x^2−xy+y^2)=7・13・19
[1]x^2−xy+y^2=7・13・19,x+y=1
[2]x^2−xy+y^2=13・19,x+y=7
[3]x^2−xy+y^2=7・19,x+y=13
[4]x^2−xy+y^2=7・13,x+y=19
[5]x^2−xy+y^2=19,x+y=7・13
[6]x^2−xy+y^2=13,x+y=7・19
[7]x^2−xy+y^2=7,x+y=13・19
[8]x^2−xy+y^2=1,x+y=7・13・19
x+y=A,x^2−xy+y^2=B
x^2−x(A−x)+(A−x)^2=B
3x^2−3Ax+A^2−B=0
x=1/6・{3A±(12B−3A^2)^1/2}
に代入すると(x,y)=(1,12),(9,10),(10,9),(12,1)が得られる.
===================================