■ワイソフ多胞体研究会(その14)
|E8|=8!・1・2^2・3^2・4^2・5・6=192・10!=x
N0=x/8・9!=240
N1=x/2・72・6=6720
N2=x/6・2^4・5!=60480(α2)
N3=x/24・5!=241920(α3)
N4=x/5!・6・2=483840(α4)
N5=x/6!・2=483840(α5)
N6=x/7!・2+x/7!=69120(α6)+138240(α6)
N7=x/8!+x/2^6・7!=17280(α7)+2160(β7)
N0+N2+N4+N6=N1+N3+N5+N7=751920
===================================
421の頂点は
(±2,0,0,0,0,0,0,0)とその置換
(±1;0,0,0,±1,±1,0,±1)の巡回置換
(0;±1,±1,±1,0,0,±1,0)と巡回置換
たとえば
(0;±1,±1,0,0,±1,0,±1)
(0;±1,0,0,±1,0,±1,±1)
(0;0,0,±1,0,±1,±1,±1)
(0;0,±1,0,±1,±1,±1,0)
(0;±1,0,±1,±1,±1,0,0)
(0;0,±1,±1,±1,0,0,±1)
したがって,半径^2は2^2=4→2
頂点間距離^2=4→2
頂点間距離が2のとき,半径は2
R^2=1+1/3+1/6+1/10+1/15+1/21+1/28+a8^2=4
=1+1/3+1/6+1/10+1/15+1/21+2/7+b8^2
R^2=12/7+2/7+b8^2=12/7+1/28+a8^2=4
a8^2=(112−48−1)/28=9/4
b8^2=(28−12−2)/7=2
===================================