■おかあさんのための数学教室(その97)

[1]ド・モンモールの問題

 n個の宛名を書いた封筒にn個の手紙を無作為に入れるとき,すべての手紙がその宛名と違う封筒に入る確率は,

  1−1/1!+1/2!−・・・+(−1)^n1/n!

n→∞のとき,

  (1−1/n)^n → 1/e=0.3678・・・

に近づく.

===================================

[2]シュタイナーの問題

 y=x^(1/x)の最大値を求めよ.

 y’=(1−logx)x^(1/x-2)

より,y=x^(1/x)は,x=eのとき,最大値e^(1/e)=1.4446・・・をとる.

===================================

[3]オイラーの問題

 xが[e^(-e),e^(1/e)]=[0.0659・・・,1.4446・・・]の間にあるとき,y=x^x^x^x^x・・・が,ある極限に近づくことをオイラーが示した.e^(1/e)=1.4446・・・は1より大きいことに注意.無限大に発散しないのであろうか?

===================================