■DE群多面体の面数公式(その851)

  cosθ=bn/{bn-1^2+bn^2}^1/2

を計算してみたい.

===================================

 321の基本単体の頂点は,ρについて

P0(0,0,0,0,0,0,0)

P1(1,0,0,0,0,0,0)

P2(1,1/√3,0,0,0,0,0)

P3(1,1/√3,1/√6,0,0,0,0)

P4(1,1/√3,1/√6,1/√10,0,0,0)

P5(1,1/√3,1/√6,1/√10,1/√15,0,0)

P6(1,1/√3,1/√6,1/√10,1/√15,1/√21,0)

P7(1,1/√3,1/√6,1/√10,1/√15,1/√21,√(9/7))

  cosθ=√(7/9)/{21+7/9}^1/2=√(7/9)√(9/196)=√(1/28)

σについて

P0(0,0,0,0,0,0,0)

P1(1,0,0,0,0,0,0)

P2(1,1/√3,0,0,0,0,0)

P3(1,1/√3,1/√6,0,0,0,0)

P4(1,1/√3,1/√6,1/√10,0,0,0)

P5(1,1/√3,1/√6,1/√10,1/√15,0,0)

P6(1,1/√3,1/√6,1/√10,1/√15,√(2/6),0)

P7(1,1/√3,1/√6,1/√10,1/√15,√(2/6),1)

  cosθ=1/{3+1}^1/2=1/2

===================================