■DE群多面体の面数公式(その811)

[2]E4=t1α4

 t1α4のファセットは1辺の長さ2のα3とβ3.a4,b4はt1α4とファセットの中心との距離とすると,

[1]αn:aj=(2/j(j+1))^1/2

[2]βn:aj=(2/j(j+1))^1/2,an=(2/n)^1/2

 頂点間距離が2のとき,半径は√(12/5)

 R^2=1+1/3+1/6+a4^2=12/5

=1+1/3+2/3+b4^2

 1+1/3=(3+1)/3=4/3

 R^2=4/3+2/3+b4^2=4/3+1/6+a4^2=12/5

 a4^2=(72−40−5)/30=9/10

 b4^2=(72−40−20)/30=4/10

===================================