■DE群多面体の面数公式(その807)

 D4[−1,1]^nの頂点は「1」の数が偶数の頂点を選ぶと

  (1,1,1,1)

  (1,1,−1,−1)

 したがって,半径^2は4→√4

 頂点間距離^2=2^2+2^2=8→2√2

 頂点間距離が2のとき,半径は√(4/2)

 ファセットは1辺の長さ2のα3とhγ3=α3.a4,b4はhγ4とファセットの中心との距離とすると,

[1]αn:aj=(2/j(j+1))^1/2

 R^2=1+1/3+1/6+a4^2=4/2

 a4^2=(12−6−2−1)/6=3/6

 R^2=1+1/3+b3^2+b4^2=4/2

 b4^2=1/2

 b3^2=(12−6−2−3)/6=1/6

===================================

 a4については

  {n(1−2/n)^2}^1/2/√2=(n−2)/√(2n)

は半立方体の中心から単体面までの距離を表すが,n=4を代入すると

  2/√8=√(1/2)=a4

となって一致.

 b3については(n−2)/√(2n)にn=3を代入した値に一致する.

===================================

ρについて

P0(0,0,0,0)

P1(1,0,0,0)

P2(1,1/√3,0,0)

P3(1,1/√3,1/√6,0)

P4(1,1/√3,1/√6,1/√2)

σについて

P0(0,0,0,0)

P1(1,0,0,0)

P2(1,1/√3,0,0)

P3(1,1/√3,1/√6,0)

P4(1,1/√3,1/√6,1/√2)

===================================