■学会にて(直観幾何学研究会2019,その8)
[Q](b+c)/a+(c+a)/b+(a+b)/c=nの自然数解(a,b,c)を求めよ.
[A]a=F2k-1,b=F2k+1,c=F2k-1L2kF2k+1が知られている.
===================================
確認してみたい.
F1=1,F2=1,F3=2,F4=3,F5=5,F6=8,F7=13,F8=21,F9=34
L1=1,L2=3,L3=4,L4=7,L5=11,L6=18,L7=29,L8=47
[1]k=1
F1=1,F3=2,L2=3→ a=1,b=2,c=6
(a+b+c)(1/a+1/b+1/c)
=9(1/1+1/2+1/6)
=9(6/6+3/6+1/6)=9・10/6=15 (OK)
n=12=0 (mod4)
[2]k=2
F3=2,F5=5,L4=7→ a=2,b=5,c=70
(a+b+c)(1/a+1/b+1/c)
=77(1/2+1/5+1/70)
=77(35/70+14/70+1/70)=77・50/70=5 (OK)
n=2=2 (mod4)
[3]k=3
F5=5,F7=13,L6=18→ a=5,b=13,c=1170
(a+b+c)(1/a+1/b+1/c)
=1188(1/5+1/13+1/1170)
=1188(234/1170+90/1170+1/1170)=1188・325/1170=330 (OK)
n=327=3 (mod4)
[4]k=4
F7=13,F9=34,L8=47→ a=13,b=34,c=20774
(a+b+c)(1/a+1/b+1/c)
=20821(1/13+1/34+1/20774)
=20821(1598/20774+611/20774+1/20774)=20821・2210/20774=2215 (OK)
n=2212=0 (mod4)
===================================