■1001(その11)
【1】10を原始根とする素数
aは−1でも平方数でもないものとします.aが素数pに対する原始根とは,a^1−1,a^2−1,・・・,a^p-2−1のどれもpで割り切れなくて,a^p-1−1がpで割り切れるものを指します.
たとえば,a=10はp=3の原始根ではなくて,p=7の原始根です.あるいは同じことですが,
1/7=0.142857142857・・・
(循環節:142857の長さ6)
1/17=0.0588235294117647・・・
(循環節:0588235294117647の長さ16)
のように,1/pを10進法で小数展開したときの循環節の長さがp−1となる特別な素数を10を原始根とする素数といいます.
===================================
【2】アルティンの原始根予想
πa(x)/π(x)〜Cx/(logx)
すなわち,aを原始根にもつ素数は無限個存在するという予想は,一般化されたリーマン予想を仮定すれば成立することがわかっています(Hooley,1967).また,アルティンの原始根予想の関数体版はすでに証明されています.
===================================