■DE群多面体の面数公式(その545)

[1]E6

 α5のひとつの頂点に集まる基本単体数は6!/6

 β5のひとつの頂点に集まる基本単体数は2^55!/10

それぞれx,y個ずつあるから

  5!x:2^44!y=5x:16y=1:2

  5x=8y

  f5=27(x/6+y/10)=99

  5x+3y=220

に代入すると

  11y=220,y=20,x=32

 ひとつの頂点に4次元面(α4)がx個集まるとする.

  f4=27(x/5)=648→x=120

 ひとつの頂点に3次元面(α3)がx個集まるとする.

  f3=27(x/4)=1080→x=160

 ひとつの頂点に2次元面(α2)がx個集まるとする.

  f2=27(x/3)=720→x=80

 ひとつの頂点に1次元面(α1)がx個集まるとする.

  f1=27(x/2)=216→x=16

===================================

(1,16,80,160,120,32α5+20β5)

===================================