■DE群多面体の面数公式(その525)
Dnの基本単体は,αn-1の基本単体に
{n(1−2/n)^2}^1/2/√2=(n−2)/√(2n)
をつけたものとして一般化することができるとしたが,これはρ体のみである.
===================================
hγ5のファセットは1辺の長さ2のα4とβ4.a5,b5は121とファセットの中心との距離とすると,
[1]αn:aj=(2/j(j+1))^1/2
[2]βn:aj=(2/j(j+1))^1/2,an=(2/n)^1/2
R^2=1+1/3+1/6+1/10+a5^2=5/2
=1+1/3+1/6+2/4+b5^2
1+1/3+1/6=(6+2+1)/60=3/2
R^2=3/2+2/4+b5^2=3/2+1/10+a5^2=5/2
a5^2=(25−15−1)/10=9/10
b5^2=(25−15−5)/10=1/2
===================================
[雑感]ρ体,すなわち,αn-1の基本単体から中心までの距離でよいということであれば,E群の場合も簡単になるが,それは誤りである.
DE群のtrifurcation,すなわち,DE群は2種類の基本単体ρσからなり,境界面上に参照点が来ると考えるべきである.
[1]この計算はhγnの中心からαファセットの中心までの距離を求めようとしたものであるが,
aj=(2/j(j+1))^1/2
an-1=(2/n(n−1))^1/2
an=(n−2)/√(2n)
は単体面αn-1までの距離を表す.
[2]一方,1次元低いhγn-1面までの距離は1/√2.したがって,基本単体は
aj=(2/j(j+1))^1/2
an-1=(n−3)/√2(n−1)
an=1/√2
===================================