■DE群多面体の面数公式(その393)

 αとβの接合面は

[1]αn:aj=(2/j(j+1))^1/2

[2]βn:aj=(2/j(j+1))^1/2,an=(2/n)^1/2

と思い込んでいたが,(その390)〜(その392)より,そうではないこともわかったし,基本図形が角柱になる場合もあることがわかった.

 これまで感していた二面角のズレもこれによって生じているようである.再考してみたい.

===================================

 221はファセットは1辺の長さ2のα5とβ5.a6,b6は221とファセットの中心との距離とすると,

[1]αn:aj=(2/j(j+1))^1/2

[2]βn:aj=(2/j(j+1))^1/2,an=(2/n)^1/2

 R^2=1+1/3+1/6+1/10+1/15+a6^2=8/3

=1+1/3+1/6+1/10+2/5+b6^2

 1+1/3+1/6+1/10=(30+10+5+3)/30=8/5

 R^2=8/5+2/5+b6^2=8/5+1/15+a6^2=8/3

 a6^2=(40−24−1)/15=1

 b6^2=(40−24−6)/15=2/3

===================================

 221の基本単体の頂点は,ρについて

P0(0,0,0,0,0,0)

P1(1,0,0,0,0,0)

P2(1,1/√3,0,0,0,0)

P3(1,1/√3,1/√6,0,0,0)

P4(1,1/√3,1/√6,1/√10,0,0)

P5(1,1/√3,1/√6,1/√10,1/√15,0)

P6(1,1/√3,1/√6,1/√10,1/√15,1)

σについて

P0(0,0,0,0,0,0)

P1(1,0,0,0,0,0)

P2(1,1/√3,0,0,0,0)

P3(1,1/√3,1/√6,0,0,0)

P4(1,1/√3,1/√6,1/√10,0,0)

P5(1,1/√3,1/√6,1/√10,√(2/5),0)

P6(1,1/√3,1/√6,1/√10,√(2/5),√(2/3))

 この二面角を求めるために,6超平面

 a1x1+a2x2+a3x3+a4x4+a5x5+a6x6=d

===================================