■マイ未解決問題2018(その18)
(その17)の補足.
レンストラ数列{xn}
x0=1,xn+1={1+Σ(0,n)xi^2}/(n+1)
を考える.
x1=(1+1^2)/1=2
x2=(1+1^2+2^2)/2=3
x3=(1^2+1^2+2^2+3^2)/3=5
x4=(1^2+1^2+2^2+3^2+5^2)/4=10
x5=(1^2+1^2+2^2+3^2+5^2+10^2)/5=28
x6=(1^2+1^2+2^2+3^2+5^2+10^2+28^2)/6=154
この数列はx43で初めて整数にならない.
===================================
(その16)の補足.
[1]5以上のフィボナッチ数Fnが素数ならば,nは素数である.
[2]しかし,この逆は成立しない.添字が素数であるF3,F5,F7,F11,F13,F17は素数であるが,F19=37・113は素数にならない最初のフィボナッチ数である.
===================================