■DE群多面体の面数公式(その349)

 正三角柱の基本単体の頂点は,σについて

P0(0,0,0)

P1(1,0,0)

P2(1,1,0)

P3(1,1,1/√3)

 a1x1+a2x2+a3x3=d

===================================

[1]P1P2P3を通る超平面:

  a1=1,a2〜a3=0,d=1

[2]P0P2P3を通る超平面

  d=0,a1=1とする.

  a1+a2=0,a2=−1

  a3=0

[3]P0P1P3を通る超平面

  d=0,a1=0,a2=1とする

  a2+a3/√3=0,a3=−√3

[4]P0P1P2P3を通る超平面

  a3=1,a1〜a2=0,d=0

===================================

  a=(1,0,0)

  b=(1,−1,0)

  c=(0,1,−√3)

  d=(0,0,1)

を正規化すると

  a=(1,0,0)

  b=(1/√2,−1/√2,0)

  c=(0,1/2,−√3/2)

  d=(0,0,1)

a・b=1/√2

a・c=0,a・d=0

b・c=−1/2√2  (OK)

b・d=0

c・d=−√3/2

===================================