■DE群多面体の面数公式(その326)

 (その325)ではわかりにくかったが,221の基本単体の頂点は,σについて

P0(0,0,0,0,0,0)

P1(1,0,0,0,0,0)

P2(1,1/√3,0,0,0,0)

P3(1,1/√3,1/√6,0,0,0)

P4(1,1/√3,1/√6,1/√10,0,0)

P5(1,1/√3,1/√6,1/√10,√(2/5),0)

P6(1,1/√3,1/√6,1/√10,√(2/5),√(2/3))

 a1x1+a2x2+a3x3+a4x4+a5x5+a6x6=d

===================================

[1]P1P2P3P4P5P6を通る超平面:

  a1=1,a2〜a6=0,d=1

[2]P0P2P3P4P5P6を通る超平面

  d=0,a1=1とする.

  a1+a2/√3=0,a2=−√3

  a1+a2/√3+a3/√6=0,a3=0,a4〜a6=0

[3]P0P1P3P4P5P6を通る超平面

  d=0,a1=0,a2=1とする

  a2/√3+a3/√6=0,a3=−a2√2=−√2

  a4〜a6=0

[4]P0P1P2P4P5P6を通る超平面

  d=0,a1=0,a2=0,a3=1とする

  a1+a2/√3+a3/√6+a4/√10=0,a4=−√(5/3)

  a5〜a6=0

[5]P0P1P2P3P5P6を通る超平面

  d=0,a1=0,a2=0,a3=0,a4=1とする

  a1+a2/√3+a3/√6+a4/√10+a5・√(2/5)=0,a5=−1/2

  a6=0

[6]P0P1P2P3P4P6を通る超平面

  d=0,a1〜a4=0,a5=1とする

  a1+a2/√3+a3/√6+a4/√10+a5・√(2/5)+a6・√(2/3)=0,a6=−√(3/5)

[6]P0P1P2P3P4P5を通る超平面

  a6=1,a1〜a5=0,d=0

===================================

  a=(1,0,0,0,0,0)

  b=(1,−√3,0,0,0,0)

  c=(0,1,−√2,0,0,0)

  d=(0,0,1,−√(5/3),0,0)

  e=(0,0,0,1,−1/2,0)

  f=(0,0,0,0,1,−√(3/5))

  g=(0,0,0,0,0,1)

を正規化すると

  a=(1,0,0,0,0,0)

  b=(1/2,−√3/2,0,0,0,0)

  c=(0,1/√3,−√(2/3),0,0,0)

  d=(0,0,√(3/8),−√(5/8),0,0)

  e=(0,0,0,2/√5,−1/√5,0)

  f=(0,0,0,0,√(5/8),−√(3/8))

  g=(0,0,0,0,0,1)

a・b=1/2

a・c=0,a・d=0,a・e=0,a・f=0,a・g=0

b・c=−1/2,b・d=−1/2

b・e=0,b・f=0,b・g=0

c・d=−1/2

c・e=0,c・f=0,c・g=0

d・e=−1/√2

d・f=0,c・g=0

e・f=−1/√8  (OK)

e・g=0

f・g=−√(3/8)

===================================

d・e=−1/√2

であることをみると,

e・f=−1/√8は想定する二面角と一致している.

===================================