■DE群多面体の面数公式(その294)
221において,
R^2=1+1/3+1/6+1/10+1/15+a6^2=8/3
=1+1/3+1/6+1/10+2/5+b6^2
1+1/3+1/6+1/10=(30+10+5+3)/30=8/5
R^2=8/5+2/5+b6^2=8/5+1/15+a6^2=8/3
a6^2=(40−24−1)/15=1
b6^2=(40−24−6)/15=2/3
===================================
基本単体は,
b6=(2/3)^1/2
b5=(2/5)^1/2
b4=1/√10
b3=1/√6
(b2^2+b1^2)^1/2=(1+1/3)^1/2=2/√3
(a1^2+a2^2+・・・+an^2)^1/2={8/3}^1/2
===================================