■DE群多面体の面数公式(その294)
 221において,
 R^2=1+1/3+1/6+1/10+1/15+a6^2=8/3
=1+1/3+1/6+1/10+2/5+b6^2
 1+1/3+1/6+1/10=(30+10+5+3)/30=8/5
 R^2=8/5+2/5+b6^2=8/5+1/15+a6^2=8/3
 a6^2=(40−24−1)/15=1
 b6^2=(40−24−6)/15=2/3
===================================
 基本単体は,
  b6=(2/3)^1/2
  b5=(2/5)^1/2
  b4=1/√10
  b3=1/√6
  (b2^2+b1^2)^1/2=(1+1/3)^1/2=2/√3
  (a1^2+a2^2+・・・+an^2)^1/2={8/3}^1/2
===================================