■DE群多面体の面数公式(その294)

 221において,

 R^2=1+1/3+1/6+1/10+1/15+a6^2=8/3

=1+1/3+1/6+1/10+2/5+b6^2

 1+1/3+1/6+1/10=(30+10+5+3)/30=8/5

 R^2=8/5+2/5+b6^2=8/5+1/15+a6^2=8/3

 a6^2=(40−24−1)/15=1

 b6^2=(40−24−6)/15=2/3

===================================

 基本単体は,

  b6=(2/3)^1/2

  b5=(2/5)^1/2

  b4=1/√10

  b3=1/√6

  (b2^2+b1^2)^1/2=(1+1/3)^1/2=2/√3

  (a1^2+a2^2+・・・+an^2)^1/2={8/3}^1/2

===================================