■オイラーのエラスチカからミウラ折りへ(その16)

  logx=∫(1,x)dt/t

  arctanx=∫(0,x)dt/(1+t^2)

より,有理関数

  t/(at+b),(dt+e)/(at^2+bt+c)

の積分は,logxないしarctanxに帰着される.

===================================

[1]∫dx/(1+x^2)=arctanx

[2]∫dx/(1+x^2)^1/2=log(x+(1+x^2)^1/2)

[3]∫(1+x^2)^1/2dx=1/2・x(1+x^2)^1/2+1/2・log(x+(1+x^2)^1/2)

===================================

[2]∫dx/(1+x^2)^1/2=log(x+(1+x^2)^1/2)

 t=x+(1+x^2)^1/2とおく.

 x=(t^2−1)/2t,dx=(1+t^2)/2t^2dt 

 (1+x^2)^1/2=t−x=(1+t^2)/2t

 したがって,

∫dx/(1+x^2)^1/2=∫2t/(1+t^2)・(1+t^2)/2t^2dt

=∫dt/t=logt=log(x+(1+x^2)^1/2)

===================================

[3]∫(1+x^2)^1/2dx=1/2・x(1+x^2)^1/2+1/2・log(x+(1+x^2)^1/2)

 ∫(1+x^2)^1/2dx=∫(1+t^2)/2t・(1+t^2)/2t^2dt

=1/4・∫(t^4+2t^2+1)/t^3dt

=1/4・∫(t+2/t+1/t^3)dt

=1/4{1/2・t^2+2logt−1/2t^2}

=1/8{t^2−1/t^2}+1/2・logt

 t=x+(1+x^2)^1/2

 1/t=(1+x^2)^1/2−x

 t^2−1/t^2=4x(1+x^2)^1/2

===================================