■サマーヴィルの等面四面体(その843)
2つのベクトルa↑,b↑を基底とする平行体(平行四辺形)の面積は,外積は
a↑×b↑
3つのベクトルa↑,b↑,c↑を基底とする平行体(平行六面体)の体積は,スカラー三重積
(a↑×b↑)・c↑
すなわち,外積a↑×b↑とベクトルc↑の内積で与えられます.
|a↑|=a,|b↑|=bとすれば,平行四辺形の面積は,
S=absinθ
ですから,
S^2=a^2b^2(1−cos^2θ)
=|a↑|^2|b↑|^2−(a↑・b↑)^2
=|a↑・a↑ a↑・b↑|
|b↑・a↑ b↑・b↑|
同様に,平行六面体の体積は
V^2=|a↑・a↑ a↑・b↑ a↑・c↑|
|b↑・a↑ b↑・b↑ b↑・c↑|
|c↑・a↑ c↑・b↑ c↑・c↑|
で与えられます.
これらのように,内積の行列式で定義される行列式をグラムの行列式(グラミアン)といいます.平行体の面積・体積はグラミアンの平方根に等しくなるというわけです.
また,座標を使って表せば,n+1個の点の座標に(1,1,1,・・・,1)を加えて作られる(n+1)次の行列式の絶対値になります.
|S|=|1 x1 y1| |V|=|1 x1 y1 z1|
|1 x2 y2| |1 x2 y2 z2|
|1 x3 y3| |1 x3 y3 z3|
|1 x4 y4 z4|
原点が含まれるときは,
|S|=|x1 y1| |V|=|x1 y1 z1|
|x2 y2| |x2 y2 z2|
|x3 y3 z3|
のように展開されます.
なお,これらはそれぞれn次元単体の体積のn!倍になりますから,三角形面積,四面体の体積は,
S’=S/2
V’=V/6
また,4辺の長さがa,b,cで与えられた三角形,6辺の長さがa,b,c,d,e,fで与えられた四面体の場合は,
2^2(2!)^2S’^2=|0 a^2 b^2 1|
|a^2 0 c^2 1|
|b^2 c^2 0 1|
|1 1 1 0|
2^3(3!)^2V’^2=|0 a^2 b^2 c^2 1|
|a^2 0 d^2 e^2 1|
|b^2 d^2 0 f^2 1|
|c^2 e^2 f^2 0 1|
|1 1 1 1 0|
となります.
前者はヘロンの公式にほかなりませんが,ヘロンの公式とは,任意の三角形の三辺の長さをa,b,c,面積をΔとして,
Δ^2=(2a^2b^2+2b^2c^2+2c^2a^2−a^4−b^4−c^4)/16
=(a+b+c)(−a+b+c)(a−b+c)(a+b−c)/16
ここで,2s=a+b+cとおくと
Δ^2=s(s−a)(s−b)(s−c)
となり,おなじみの平面三角形のヘロンの公式が得られます.
===================================