■サマーヴィルの等面四面体(その843)

 2つのベクトルa↑,b↑を基底とする平行体(平行四辺形)の面積は,外積は

  a↑×b↑

3つのベクトルa↑,b↑,c↑を基底とする平行体(平行六面体)の体積は,スカラー三重積

  (a↑×b↑)・c↑

すなわち,外積a↑×b↑とベクトルc↑の内積で与えられます.

 |a↑|=a,|b↑|=bとすれば,平行四辺形の面積は,

  S=absinθ

ですから,

  S^2=a^2b^2(1−cos^2θ)

    =|a↑|^2|b↑|^2−(a↑・b↑)^2

    =|a↑・a↑  a↑・b↑|

     |b↑・a↑  b↑・b↑|

 同様に,平行六面体の体積は

  V^2=|a↑・a↑  a↑・b↑  a↑・c↑|

     |b↑・a↑  b↑・b↑  b↑・c↑|

     |c↑・a↑  c↑・b↑  c↑・c↑|

で与えられます.

 これらのように,内積の行列式で定義される行列式をグラムの行列式(グラミアン)といいます.平行体の面積・体積はグラミアンの平方根に等しくなるというわけです.

 また,座標を使って表せば,n+1個の点の座標に(1,1,1,・・・,1)を加えて作られる(n+1)次の行列式の絶対値になります.

  |S|=|1 x1 y1|   |V|=|1 x1 y1 z1|

      |1 x2 y2|       |1 x2 y2 z2|

      |1 x3 y3|       |1 x3 y3 z3|

                     |1 x4 y4 z4|

 原点が含まれるときは,

  |S|=|x1 y1|   |V|=|x1 y1 z1|

      |x2 y2|       |x2 y2 z2|

                   |x3 y3 z3|

のように展開されます.

 なお,これらはそれぞれn次元単体の体積のn!倍になりますから,三角形面積,四面体の体積は,

  S’=S/2

  V’=V/6

 また,4辺の長さがa,b,cで与えられた三角形,6辺の長さがa,b,c,d,e,fで与えられた四面体の場合は,

  2^2(2!)^2S’^2=|0  a^2 b^2 1|

             |a^2 0  c^2 1|

             |b^2 c^2 0  1|

             |1  1  1  0|

  2^3(3!)^2V’^2=|0  a^2 b^2 c^2 1|

             |a^2 0  d^2 e^2 1|

             |b^2 d^2 0  f^2 1|

             |c^2 e^2 f^2 0  1|

             |1  1  1  1  0|

となります.

 前者はヘロンの公式にほかなりませんが,ヘロンの公式とは,任意の三角形の三辺の長さをa,b,c,面積をΔとして,

Δ^2=(2a^2b^2+2b^2c^2+2c^2a^2−a^4−b^4−c^4)/16

  =(a+b+c)(−a+b+c)(a−b+c)(a+b−c)/16

ここで,2s=a+b+cとおくと

  Δ^2=s(s−a)(s−b)(s−c)

となり,おなじみの平面三角形のヘロンの公式が得られます.

===================================