■中心極限定理と重複対数の法則(その3)
【2】ディリクレの定理の証明
ディリクレの定理,すなわち「任意の実数αについて
|α−an/bn|<1/bn^2
を満たす有理数an/bnが存在する.」の証明を掲げることにする.
===================================
(証)αが有理数で,α=p/qと表されたとする.{bn}は次々に大きくなる整数列であるから,q<bnである番号をとると
|α−an/bn|=|p/q−an/bn|=|pbn−qan|/qbn
しかし,an/bnはαとは一致しないので分子は1以上.したがって
|α−an/bn|≧1/qbn
であるが,これが<1/bn^2なのでq>bnとなり矛盾.すなわち,αは有理数ではあり得ないことになる.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
このように,「ディリクレの定理」の証明は,引き出し論法あるいは鳩の巣原理と呼ばれるものから容易に導かれる.この原理はn個の巣箱にn+1羽の鳩が入っているならば,ある巣箱には少なくとも2羽の鳩が入っていなければならないというものである.
xの小数部分x−[x]を{x}と書くことにすると,0≦{x}<1である.ここでq+1個の数,0,1,{α},{2α},・・・,{(q−1)α}を考えると,これらの数はすべて区間[0,1]に属する.
区間[0,1]をq個の互いに交わらないながさ1/qの小区間に分割すれば,q+1個の数のうちの2個は同じ小区間に入ることになる.その2数の差はbnα−anで,また,0<bn<qであるから,|bnα−an|≦1/qが成り立つ.
===================================