■サマーヴィルの等面四面体(その822)
等面四面体
AB=BC=CD=1
AC=BD=b
AD=1
の高さの最大値・最小値を求めよ.(その820)をやり直し.
===================================
144V^2=2b^4(2−b^2),9V^2=b^4(2−b^2)/8
V=S・h/3
h=3V/S,h^2=9V^2/S^2
b+2=2sとおくと,ヘロンの公式より
S^2=s(s−1)^2(s−b)
=(b/2+1)b^2(1−b/2)/4=b^2(1−b^2/4)/4
=b^2(4−b^2)
h^2=9V^2/S^2=b^4(2−b^2)/8・1/b^2(4−b^2)
=b^2(2−b^2)/8(4−b^2)
H=8h^2=b^2(2−b^2)/(4−b^2)
H’={{4b−4b^3)(4−b^2)+2b(2b^2−b^4)}/(4−b^2)^2
={4b{1−b^2)(4−b^2)+2b(2b^2−b^4)}/(4−b^2)^2
H’の分子/2bは
=2{1−b^2)(4−b^2)+(2b^2−b^4)
=2(4−5b^2+b^4)+(2b^2−b^4)
=b^4−8b^2+8
b^2=4±√8
b=1.08239
b=2.61313(>√2より,等面四面体にならない)
===================================
[まとめ]高さの最大値は,正四面体とサマーヴィルの等面四面体の間にある.
b=1,b=2/√3=1.1547
===================================