■オイラーと無限級数(その1)
[1]Σ1/n=∞ (オレーム)
[2]Σ(−1)^n/(2n+1)
=1−1/3+1/5−1/7+1/9−1/11+1/13−1/15+・・・=π/4 (グレゴリー・ライプニッツ)
[3]Σ{1/(8n+1)+1/(8n+3)−1/(8n+5)−1/(8n+7)}
=1+1/3−1/5−1/7+1/9+1/11−1/13−1/15+・・・=π/2√2 (ニュートン)
に引き続き,オイラーは
[4]Σ1/n^2=π^2/6
[5]Σ1/n^2=Π(1−p^-2)^-1
[6]Σ1/n^2=−2π^2Πn
[7]Σ1/n^2=∫(0,1)logxdx/(x−1)
[8]Σ1/n^3=2π^2/7・log2+16/7・∫(0,1)xlog(sinx)dx
[9]∫(0,1)(x−1)dx/logx=log2
をたったひとりで発見した.
===================================