■アルキメデスとてこの原理(その6)

【1】まんじゅう等分問題

 半径1の半球を底面と平行な平面y=aで切って,体積を2等分するにはどこで切ればよいか−−−「まんじゅう等分問題」を解いてみよう.

 y=f(x)のグラフをx軸を中心に回転させてできる回転体の体積は

  V[y]=π∫y^2dx

で与えられる.y=(1-x^2)^(1/2)とおくと

  V[y]=π∫(1-x^2)dx

したがって,

  π∫(0,a)(1-x^2)dx=π(3a-a^3)/3

が球全体の1/4になればよい.

  π∫(0,a)(1-x^2)dx=π(3a-a^3)/3=π/3

  a^3-3a+1=0

  a=0.3472963553=2cos10

===================================