■DE群多面体の面数公式(その113)
132の場合,
132の頂点数は576,頂点図形は032=t2α6
(35,210,350,245,84,14)
ファセット122は56個=|E7|/|E6|
ファセット131=hγ6は126個=|E7|/|D6|
{3,3,3,3,3}(0,0,1,0,0,0)の14個の5次元面が,何個のα5,β5からできているか計算できればよい.
===================================
15・7−5・21+1・35=35
60・7−10・21+0・35=210
80・7−10・21+0・35=350
45・7−5・21+0・35+1・35=245
12・7−1・21+0・35+0・35+1・21=84
1・7−0・21+0・35+0・35+0・21+1・7=14
{3,3,3,3,3}(0,0,1,0,0,0)
{3,3,3,3}(0,1,0,0,0)×{}(0)
{3,3,3}(1,0,0,0)×{3}(0,0)
{3,3}(0,0,0)×{3,3}(0,0,1)
{3}(0,0)×{3,3,3}(0,0,1,0)
{}(0)×{3,3,3,3}(0,0,1,0,0)
===================================