■DE群多面体の面数公式(その60)
E6(221)の場合,121(hγ5)のfベクトルが既知であった.
E7(321)の場合,221のfベクトルが既知である
E8(421)の場合,321のfベクトルが既知であるから,同様の計算は可能と思われる.
===================================
|E7|=7!・2・2^3・3^2・4=8・9!=x
N0=x/72・6!=56
N1=x/2・2^4・5!=756
N2=x/6・5!=4032(α2)
N3=x/24・6・2=10080(α3)
N4=x/5!・2=12096(α4)
N5=x/6!・2+x/6!=2016(α5)+4032(α5)
N6=x/7!+x/2^5・6!=576(α6)+126(β6)
N0+N2+N4+N6=N1+N3+N5+2=16886
===================================
|E8|=8!・1・2^2・3^2・4^2・5・6=192・10!=x
N0=x/8・9!=240
N1=x/2・72・6=6720
N2=x/6・2^4・5!=60480(α2)
N3=x/24・5!=241920(α3)
N4=x/5!・6・2=483840(α4)
N5=x/6!・2=483840(α5)
N6=x/7!・2+x/7!=69120(α6)+138240(α6)
N7=x/8!+x/2^6・7!=17280(α7)+2160(β7)
N0+N2+N4+N6=N1+N3+N5+N7=751920
===================================