■DE群多面体の面数公式(その9)
(その8)において,E6,E7,E8はいずれもαnとβnの基本単体1:2から構成されていると計算される.
===================================
|E6|=6!・3・2^3・3=72・6!=x
N5=x/6!+x/2^4・5!=72(α5)+27(β5)
α5の基本単体数は6!,β5の基本単体数は5!・2^5
72α5の基本単体数は6!・72,27β5の基本単体数は5!・2^5・27
6・72:32・27=1:2
===================================
|E7|=7!・2・2^3・3^2・4=8・9!=x
N6=x/7!+x/2^5・6!=576(α6)+126(β6)
α6の基本単体数は7!,β6の基本単体数は6!・2^6
576α6の基本単体数は7!・576,126β6の基本単体数は6!・2^6・126
7・576:64・126=1:2
===================================
|E8|=8!・1・2^2・3^2・4^2・5・6=192・10!=x
N7=x/8!+x/2^6・7!=17280(α7)+2160(β7)
α7の基本単体数は8!,β7の基本単体数は7!・2^7
17280α7の基本単体数は8!・17280,2160β7の基本単体数は7!・2^7・2160
8・1728:128・216=1:2
===================================
[まとめ]αnとβnの基本単体1:2から構成されている.
===================================