■サマーヴィルの等面四面体(その809)
△4(0,0,0,0,0),(−4,1,1,1,1),(−3,−3,2,2,2),(−2,−2,−2,3,3),(−1,−1,−1,−1,4)
△5を
P0(0,0,0,0,0,0)
P1(−4,1,1,1,1,h)
P2(−3,−3,2,2,2,2h)
P3(−2,−2,−2,3,3,3h)
P4(−1,−1,−1,−1,4,4h)
P5(0,0,0,0,0,0,5h)のほうが自然である.
===================================
P0P1^2=20+h^2
P0P2^2=30+4h^2
P0P3^2=30+9h^2
P0P4^2=20+16h^2
P0P5^2=25h^2
P1P2^2=20+h^2
P1P3^2=30+4h^2
P1P4^2=30+9h^2
P1P5^2=20+16h^2
P2P3^2=20+h^2
P2P4^2=30+4h^2
P2P5^2=30+9h^2
P3P4^2=20+h^2
P3P5^2=30+4h^2
P4P5^2=20+h^2
30+4h^2(4)<30+16h^2(3)
20+h^2(5)<20+16h^2(2)
25h^2(1)
ここで,
25h^2=20+h^2,30+4h^2=20+16h^2,h^2=5/6
ならば△5は
P0P1=P1P2=P2P3=P3P4=P4P5=√5
P0P2=P1P3=P2P4=P3P5=√8
P0P3=P1P4=P2P5=3
P0P4=P1P5=√8
P0P5=√5
===================================