■サマーヴィルの等面四面体(その809)

△4(0,0,0,0,0),(−4,1,1,1,1),(−3,−3,2,2,2),(−2,−2,−2,3,3),(−1,−1,−1,−1,4)

△5を

P0(0,0,0,0,0,0)

P1(−4,1,1,1,1,h)

P2(−3,−3,2,2,2,2h)

P3(−2,−2,−2,3,3,3h)

P4(−1,−1,−1,−1,4,4h)

P5(0,0,0,0,0,0,5h)のほうが自然である.

===================================

  P0P1^2=20+h^2

  P0P2^2=30+4h^2

  P0P3^2=30+9h^2

  P0P4^2=20+16h^2

  P0P5^2=25h^2

  P1P2^2=20+h^2

  P1P3^2=30+4h^2

  P1P4^2=30+9h^2

  P1P5^2=20+16h^2

  P2P3^2=20+h^2

  P2P4^2=30+4h^2

  P2P5^2=30+9h^2

  P3P4^2=20+h^2

  P3P5^2=30+4h^2

  P4P5^2=20+h^2

30+4h^2(4)<30+16h^2(3)

20+h^2(5)<20+16h^2(2)

25h^2(1)

ここで,

  25h^2=20+h^2,30+4h^2=20+16h^2,h^2=5/6

ならば△5は

  P0P1=P1P2=P2P3=P3P4=P4P5=√5

  P0P2=P1P3=P2P4=P3P5=√8

  P0P3=P1P4=P2P5=3

  P0P4=P1P5=√8

  P0P5=√5

===================================