■サマーヴィルの等面四面体(その808)
△3(0,0,0,0),(−3,1,1,1),(−2,−2,2,2),(−1,−1,−1,3)
△4を
P0(0,0,0,0,0)
P1(−3,1,1,1,h)
P2(−2,−2,2,2,2h)
P3(−1,−1,−1,3,3h)
P4(0,0,0,0,0,4h)のほうが自然である.
===================================
P0P1^2=12+h^2
P0P2^2=16+4h^2
P0P3^2=12+9h^2
P0P4^2=16h^2
P1P2^2=12+h^2
P1P3^2=16+4h^2
P1P4^2=12+9h^2
P2P3^2=12+h^2
P2P4^2=16+4h^2
P3P4^2=12+h^2
16+4h^2(3)
12+h^2(4)<12+9h^2(2)
16h^2(1)
ここで,
16h^2=12+h^2,12+9h^2=16+4h^2,h^2=4/5
ならば△4は
P0P1=P1P2=P2P3=P3P4=2
P0P2=P1P3=P2P4=√6
P0P3=P1P4=√6
P0P4=2
===================================