■パラメータ解? (その58)

【2】アイゼンシュタイン三角形

 ピタゴラス三角形とよく似た三角形に三辺の長さが整数であって,二辺a,bのあいだの角が120°である鈍角三角形があります.一松信先生はこの三角形をアイゼンシュタイン三角形と呼んでいますが,この三角形はピタゴラスの定理の拡張である余弦定理c^2=a^2+b^2−2ab・cosCより,

  a^2+ab+b^2=c^2

を満たします.

 この一般解は

a=k(m^2−n^2),b=k(2mn+n^2),c=k(m^2+mn+n^2)

と表現でき,(a,b,c)=(3,5,7),(7,8,13),(5,16,19),・・・など無限に存在します.

 ディオファントスはa^2+ab+b^2=c^2を満たすa,b,cをとり,(m,n)=(c,a),(c,b),(c,a+b)の三組からは同一面積(a+b)abcの直角三角形ができることを示しています.

===================================

【3】ヘロン三角形

 すべてのピタゴラス三角形は整数の面積をもっています.三辺の長さと面積が整数である三角形をヘロン三角形といいますが,直角三角形でない三角形の中にもヘロン三角形は存在します.

 ヘロン三角形は2つのピタゴラス三角形を貼り合わせることで簡単に作ることができ,たとえば,直角三角形(5,12,13)と直角三角形(9,12,15)から三辺の長さが(13,14,15)で面積が84の鋭角三角形と三辺の長さが(4,13,15)で面積が24の鈍角三角形が得られます.

 一般に,3辺と面積が有理数であるようなすべての三角形は,有理数辺をもつ2つの直角三角形から合成されます.3辺がすべて有理数の直角三角形は適当な整数倍によってピタゴラス三角形になりますから,ヘロン三角形は広義のピラゴラス三角形から合成されるといってもよいでしょう.なお,直角三角形の面積は6の倍数ですが,それが平方数となる(a,b,c)は存在しません.

===================================