■ある無限級数(その167)

(その163)で紹介した

1/(1^2+a^2) + 1/(3^2+ a^2) + 1/(5^2+ a^2) + ・・

=(π/(4a))・(e^(aπ)-1)/( e^(aπ)+1)    -----@

@をaで微分することで

-2a{1/(1^2+a^2)^2 + 1/(3^2+ a^2)^2 + 1/(5^2+ a^2)^2 + ・・}

=(-π/(4a^2))・(e^(aπ)-1)/( e^(aπ)+1)+(π/(4a))・{(aπe^(aπ)( e^(aπ)+1))-(aπe^(aπ)( e^(aπ)-1))}/( e^(aπ)+1)^2

=(-π/(4a^2))・(e^(2aπ)-1)/( e^(aπ)+1)^2+(π/(4a))・{2πe^(aπ)/( e^(aπ)+1)^2

=(-π/(4a^2))・(e^(2aπ)-1)/( e^(aπ)+1)^2+(π/(4a^2))・{2aπe^(aπ)/( e^(aπ)+1)^2

=(-π/(4a^2))・(e^(2aπ)-1+2aπe^(aπ))/( e^(aπ)+1)^2

{1/(1^2+a^2)^2 + 1/(3^2+ a^2)^2 + 1/(5^2+ a^2)^2 + ・・}

=(π/(8a^3))・(e^(2aπ)-2aπe^(aπ)-1)/(e^(aπ)+1)^2 ---A

 あるいは,右辺を

(π/(4a))・(e^(aπ)-1)/( e^(aπ)+1)

=(π/(4a))・tanh(aπ/2)

として,aで微分すると

=(-π/(4a^2))・tanh(aπ/2)+(π/(4a))・π/2・sech^2(aπ/2)

=(-π/(4a^2))・tanh(aπ/2)+(π/(4a^2))・aπ/2・sech^2(aπ/2)

=(-π/(4a^2))・{tanh(aπ/2)-aπ/2・sech^2(aπ/2)}

かえって面倒になったかもしれない・・・

===================================

Aにa=qi/pを代入すると

左辺=1/(1^2−q^2/p^2)^2+1/(3^2−q^2/p^2)^2+1/(5^2−q^2/p^2)^2+・・・

=(p/2q)^2{{1/(1−q/p)−1/(1+q/p)}^2+{1/(3−q/p)−1/(3+q/p)}^2+{1/(5−q/p)−1/(5+q/p)}^2+・・・}

=(p/2q)^2{{1/(p−q)/p)−1/((p+q)/p)}^2+{1/(3p−q)/p)−1/(3p+q)/p)}^2+{1/(5p−q)/p)−1/(5p+q)/p)}^2+・・・}

=(p^2/2q)^2{{1/(p−q)−1/(p+q)}^2+{1/(3p−q)−1/(3p+q)}^2+{1/(5p−q)−1/(5p+q)}^2+・・・}

右辺=(π/(8a^3))・(e^(2aπ)-2aπe^(aπ)-1)/(e^(aπ)+1)^2

a=qi/p

a^3=−iq^3/p^3

e^(2aπ)=e^(2qiπ/p)=cos(2qπ/p)+isin(2qπ/p)

e^(aπ)=e^(qiπ/p)=cos(qπ/p)+isin(qπ/p)

===================================